AMC005 – AMC Time and Frequency with on-board GPS and IRIG

KEY FEATURES

- GPS / PTP(1588) / IRIG / NTP Grand Master Clock
- Synchronous Ethernet
- Three arbitrary frequency disciplined clocks
- On board GPS receiver
- IRIG AM decoder input / IRIG DCLS input/output
- AMC.1 Dual PCIe Gen2 x4 or AMC.2 Dual 10GbE
- AMC.2 Dual 1000Base-X (one can mux to front RJ45)
- 100ns precision UTC timestamps, system status and GPS positions via PCIe
- TSIP data Broadcast/Multicast/Unicast via Ethernet w/ bonding/failover
- GPS NMEA serial port
- Battery or SuperCap Almanac/Ephemeris/Last position backup
- 1PPS PCIe interrupt, time events, time trigger for overall system/software synchronization
- Holds over clocks/1PPS using OCXO

The AMC005 provides a complete, feature-rich, GPS / PTP (1588) / IRIG / NTP bus-level timing solution to a µTCA/ATCA system, with exceptional flexibility.

The on-board GPS receiver or 1PPS or IRIG input is used to discipline the local oscillator and cancel out any oscillator drift or aging. Precision UTC timestamps and GPS location/time/status are all made available via PCIe registers to the host CPU/application. Time trigger output and time event interrupts synchronized to GPS UTC are available under host control. GPS location/time/status data Broadcast/Unicast output via backplane Ethernet with selectable bonding/failover behaviour.

The board can demodulate IRIG Amplitude Modulated (AM) signals and receive/transmit IRIG DC Level Shift (DCLS) signals. The disciplined clock, 1PPS, divided-down clocks, IRIG DCLS, and time trigger may be output in any combination to the TCLKA / TCLKB / TCLKC / TCLKD backplane channels.

The board acts as a Grand-Master Clock/Clock Bridge between GPS / PTP (1588) / IRIG / NTP to provide enhanced flexibility to your system design. The board also supports Synchronous Ethernet (SyncE) to eliminate clock drift at the Ethernet PHY level.

A backup battery or SuperCap provides non-volatile storage of the Almanac, Ephemeris, and Last position data to enable rapid “warm start” re-acquisition, usually within 35 seconds. The module’s console is available via front serial or SSH via Ethernet. Locking/holdover status is also available via IPMI sensors. A secondary serial port enables GPS NMEA data in/out.

Benefits of Choosing VadaTech

- Complete GPS / PTP (1588) / IRIG / NTP solution
- Flexible allocation to backplane clock signals
- Grand-Master Clock/Clock Bridge capability
- Electrical, mechanical, software, and system-level expertise in house
- Full system supply from industry leader
- AS9100 and ISO9001 certified company

The AMC005 is designed for applications requiring precise synchronization and timekeeping. It offers a robust solution for integrating GPS and IRIG timing into µTCA/ATCA systems, providing flexibility and reliability for mission-critical timing applications.
AMC005 – AMC Time and Frequency with on-board GPS and IRIG

BLOCK DIAGRAM

FRONT PANEL

GPS RECEIVER

The AMC005 includes an on-board GPS receiver which is capable of obtaining precise timing information from the GPS satellite constellation via a +3.3 V active GPS antenna (the module provides the power to antenna). The antenna connection includes short/open detection circuitry and this status is provided via sensors. The GPS receiver provides NMEA serial data out the front panel for interfacing to other equipment. The receiver provides the clock/timing engine with location, velocity, time, and status information as well as a 1PPS pulse. The clock/timing engine integrates this information together to create accurate time/clock references to the rest of the system.

IRIG AM DEMODULATOR

The AMC005 includes an on-board IRIG Amplitude Modulated (AM) signal demodulator. The output of this demodulator includes time code data as well as 1PPS and reference frequency signals. The clock/timing engine integrates this information together to create accurate time/clock references to the rest of the system.

ETHERNET PORTS WITH PTP (IEEE1588), NTP, AND SYNCHRONOUS ETHERNET

The AMC005 includes two 1000Base-X ports to the backplane base fabric (one of which can be re-directed to a 1000Base-T port on the front panel). It also includes two optional XAUI (10GbE) ports to the backplane fat pipes fabric. Any of these ports can be declared a Synchronous Ethernet (SyncE) master (or some other clock reference can be the master internally) and the other ports can be slaved to match the clock of the master port; this eliminates drift within the Ethernet PHY layer of the system when used in conjunction with other equipment that supports SyncE. All of these ports can also participate in PTP (IEEE1588) or NTP time synchronization protocols. The AMC005 can be a PTP/NTP master or a PTP/NTP slave and can bridge PTP/NTP to/from other timing protocols. The board can also broadcast/multicast/unicast the GPS Receiver’s TSIP data (location/velocity/approximate time/status) to these ports.
FRONT PANEL CLOCK I/O

The AMC005 can accept a sine wave clock in the range of 10MHz to 3GHz for use in disciplining the on-board clock synthesizer. This sine wave clock can also be routed to other clock outputs if the frequency is kept within a more limited range of 10MHz to 350MHz.

An LVCMOS clock input is also provided which can be used to input a clock or a 1PPS signal in the range of DC to 315MHz. This port can also be used to input IRIG DCLS time code as an alternative to the IRIG AM Demodulator input.

Two LVCMOS clock outputs are provided which can output many different clocks, 1PPS signals, and/or IRIG DCLS signals from within the unit via an on-board cross-point switch matrix used for routing. These outputs can be used for signals ranging from DC to 200MHz.

BACKPLANE CLOCK I/O

The AMC005 connects to all four AMC TCLK channels: TCLKA(CLK1) / TCLKB(CLK2) / TCLKC / TCLKD and can input/output clocks, 1PPS signals, and/or IRIG DCLS signals using the on-board cross-point switch matrix used for routing. These inputs/outputs can be used for signals ranging from DC to 350MHz.

When used with a PCIe fat pipes fabric the AMC005 can accept a 100MHz PCIe reference clock on FCLKA(CLK3) for synchronous PCIe clocking supporting Spread Spectrum Clocking (SSC), or the board can make use of its own on-board 100MHz PCIe reference clock for asynchronous PCIe clocking. The board does not output any clock to FCLKA (CLK3).

CLOCK DISCIPLINING AND ARBITRARY FREQUENCY SYNTHESIS

The AMC005 uses an OCXO (Oven Controlled Crystal Oscillator) and a high quality network synchronizer PLL to create a disciplined clock and 1PPS pulse from the GPS/IRIG/1PPS input. The disciplined clock can be any arbitrary frequency up to the limits of the outputs as described above. The clock and 1PPS pulse hold over if the input reference is lost to avoid disruption of the downstream clients depending on them. The board also supports two additional disciplined clocks which can be used to clean up arbitrary references and output arbitrary frequencies. These additional two can be slaved to the GPS/IRIG/1PPS input as well in case all three output clocks are desired to be derived from a common reference. The OCXO provides exceptional stability during holdover due to the way the oven maintains the crystal within its optimal temperature zone of operation.

PCI-E PRECISION TIMESTAMPING ENGINE

The AMC005 is a complete bus-level timing solution in that it maintains precision timestamps using the GPS disciplined oscillator and can provide these timestamps on demand via PCIe registers to an external host CPU (Processor AMC). Additional data is also available such as the GPS location/velocity/status information. Enhanced features such as 1PPS interrupts, time event interrupts, and time trigger output signal are also enabled under software control from the customer’s application running on the host CPU.

DUAL-CORE CPU / CONSOLE

The AMC005 uses a high-performance dual-core CPU running embedded Linux to host the VadaTech clock/timing software. The CPU console can be accessed via the front panel serial port or via SSH using any of the Ethernet ports. The software / firmware are upgradable in the field using SCP protocol to transfer the field upgrade package to the board for execution.
SPECIFICATIONS

<table>
<thead>
<tr>
<th>Architecture</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical</td>
<td>Dimensions</td>
<td>Single module, mid-size (full-size options available)</td>
</tr>
<tr>
<td></td>
<td>Width</td>
<td>2.89" (73.5 mm)</td>
</tr>
<tr>
<td></td>
<td>Depth</td>
<td>7.11" (180.6 mm)</td>
</tr>
<tr>
<td>Type</td>
<td>AMC Clock</td>
<td>GPS / PTP(1588) / IRIG / NTP Clock w/ OCXO</td>
</tr>
<tr>
<td>Standards</td>
<td>AMC</td>
<td>Type AMC.1, AMC.2</td>
</tr>
<tr>
<td>Module Management</td>
<td>IPMI</td>
<td>IPMI Version 2.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Configuration</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>AMC005</td>
<td>6W</td>
</tr>
<tr>
<td>Environmental</td>
<td>Operating temperature: −5° to 55° C industrial and extended versions also available (See environmental spec sheet)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Storage Temperature: -40° to +95° C</td>
<td></td>
</tr>
<tr>
<td>Vibration</td>
<td>Operating 9.8 m/s² (1G), 5 to 500 Hz</td>
<td></td>
</tr>
<tr>
<td>Shock</td>
<td>30Gs on each axis</td>
<td></td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>5 to 95 percent, non-condensing</td>
<td></td>
</tr>
<tr>
<td>Front Panel</td>
<td>LEDs</td>
<td>IPMI management control</td>
</tr>
<tr>
<td></td>
<td>Connectors</td>
<td>SMPM connector for GPS Antenna, SMPM connector for IRIG AM in, Four SMPM connectors for clocks in/out</td>
</tr>
<tr>
<td></td>
<td>Connectors</td>
<td>Three RS-232 ports</td>
</tr>
<tr>
<td></td>
<td>Connectors</td>
<td>RJ-45 for GbE</td>
</tr>
<tr>
<td>Mechanical</td>
<td>Hot-swap ejector</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MTBF</td>
<td>MIL Handbook 217-F@TBD Hrs</td>
<td></td>
</tr>
<tr>
<td>Certifications</td>
<td>Designed to meet FCC, CE and UL certifications where applicable</td>
<td></td>
</tr>
<tr>
<td>Compliance</td>
<td>RoHS and NEBS</td>
<td></td>
</tr>
<tr>
<td>Standards</td>
<td>Standards VadaTech is certified to both the ISO9001:2000 and AS9100B:2004 standards</td>
<td></td>
</tr>
<tr>
<td>Warranty</td>
<td>Two (2) years</td>
<td></td>
</tr>
</tbody>
</table>

INTEGRATION SERVICES AND APPLICATION-READY PLATFORMS

VadaTech has a full ecosystem of ATCA and µTCA products including chassis platforms, shelf managers, AMC modules, Switch and Payload Boards, Rear Transition Modules (RTM), Power Modules, and more. The company also offers integration services as well as pre-configured Application-Ready Platforms. Please contact VadaTech Sales for more information.

Trademarks and Disclaimer

The VadaTech logo is a registered trademark of VadaTech, Inc. Other registered trademarks are the property of their respective owners. AdvancedTCA™ and the AdvancedMC™ logo are trademarks of the PCI Industrial Computers Manufacturers Group. All rights reserved. Specification subject to change without notice.
AMC005 – AMC Time and Frequency with on-board GPS and IRIG

ORDERING OPTIONS

AMC005 – A0C – 0E0 –GHJ

A = GPS / RTC Backup Supplies
0 = None
1 = Lithium Battery
2 = SuperCap
3 = Lithium Battery and SuperCap

G = Ruggedization Level*
0 = None
1 = Contact VadaTech
2 = Contact VadaTech
3 = Contact VadaTech

C = Front Panel Size
1 = Reserved
2 = Mid-size
3 = Full-size
4 = Mid-size, SLF***, single screw

E = Fabric on Ports 4-7 and 8-11
0 = Dual 10GbE
1 = PCIe on 4-7, 10GbE on 8-11
2 = Dual PCIe

H = Temperature Range**
0 = Commercial (–5° to +55° C)
1 = Industrial (–20° to +70° C)
2 = Extended (–40° to +85° C)

J = Conformal Coating
0 = None
1 = Humiseal 1A33 Polyurethane
2 = Humiseal 1B31 Acrylic

* Ruggedization level is per the uTCA.2 and uTCA.3 specification
** Edge of module for conduction-cooled boards
*** The VadaTech SLF (Single Latching Flange) design provides one latching flange and screw on the left side of the AMC front panel – the opposite side of the standard AMC latching handle.

RELATED PRODUCTS

UTC004
3rd Generation MCH for µTCA Chassis

VT814
2U µTCA.4 Chassis, 6 AMC Slots

AMC723
Xeon E3-1125 Processor AMC

CONTACT US

VadaTech Corporate Office
198 N. Gibson Rd,
Henderson, NV 89014
Email: info@vadatech.com
Telephone: +1 702 896-3337
Fax: +1 702 896-0332

Asia Pacific Sales Office
7 Floor, No. 2, Wenhui Street, Neihu District,
Taipei 114, Taiwan
Email: info@vadatech.com
Telephone: +886-2-2627-7655
Fax: +886-2-2627-7792

VadaTech European Sales Office
VadaTech House, Bulls Copse Road,
Southampton, SO40 9LR
Email: info@vadatech.com
Telephone: +44 2380 016403