The AMC516 is an AMC FPGA Carrier with an FMC (VITA 57) interface. The AMC516 is compliant to the AMC.1, AMC.2 and/or AMC.4 specification. The unit has an on-board, reconfigurable FPGA which interfaces directly to the AMC FCLKA, TCLKA-D, FMC DP0-9 and all FMC LA/HA/HB pairs. The FPGA has interface to two DDR3 memory channels (64-bit wide and 16-bit wide). This allows for larger buffer sizes to be stored during processing as well as for queuing the data to the host.

The AMC516 has a single FMC connector per VITA-57 allowing the versatility of various FMC modules to be implemented.

The on-board quad core P2040 can run at 1.2 GHz with 1 GB of DDR3, 128 MB of Boot Flash, and a 32 GB SD Card. The PPC has x2 PCIe interface to the FPGA in addition to its local bus. The PPC has its dual GbE routed to ports 0 and 1 of the AMC via a mux to allow FPGA routing as well.
REFERENCE DESIGN

VadaTech provides several Xilinx based FPGA products. The FPGA products are in two categories; FPGA boards with FMC carriers and FPGA products with high speed ADC and DACs. The FPGA products are designed in various architectures such as AMC modules, PCIe cards and 3U Open VPX.

VadaTech provides a reference design implementation for our FPGAs complete with VHDL source code, documentation and configuration binaries. The reference design focuses on the I/O ring of the FPGA to demonstrate low-level operation of the interconnections between the FPGA and other circuits on the board and/or backplane. It is geared to prove out the hardware for early prototyping, engineering/factory diagnostics and customer acceptance of the hardware, but it does not strive to implement a particular end application. The reference VHDL reduces customer time to develop custom applications, as the code can be easily adapted to meet customer’s application requirements.

The reference design allows you to test and validate:

- Base and Fabric channels
- Clocks
- Data transfers
- Memory
- User defined LEDs

Xilinx provides Vivado Design Suite for developing applications on Xilinx based FPGAs. VadaTech provide reference VHDL developed using the Vivado Design Suite for testing basic hardware functionality. The reference VHDL is royalty free to use and modify on VadaTech products but customers are restricted from redistributing the reference code and use of this code for any other purpose.

The reference VHDL is shipped in one or more files based on number of ordering options. Not all ordering option have an impact on the FPGA and a new image is created for those options that have direct impact on the FPGA. Use the correct reference image to test your hardware. For more information, refer to the FPGA reference design manual for your device which can accessed from customer support site along with the reference images.

SUPPORTED SOFTWARE

- Default FPGA image stored in flash memory
- Linux BSP
- Build Scripts
- Device Driver
- Reference application projects for other ordering options

The user may need to develop their own FPGA code or adapt VadaTech reference code to meet their application requirements. The design pre-compiled images make use of hardware evaluation licenses, where necessary, instead of full license. VadaTech does not provide license for the Vivado tool or Xilinx IP cores, please contact Xilinx for more information.

Xilinx also provides System Generator tool for developing Digital Signal Processing (DSP) applications.

Xilinx Vivado Design Suite, Xilinx System Generator for DSP
DATA ACQUISITION

VadaTech offers a wide range of FPGA AMCs, RTMs, FMC Carriers and FMCs that can be combined to build a Data Acquisition (DAQ) sub-system. The DAQ Series software, when used with a supported hardware configuration, provides all that is needed to configure the system, acquire data and transfer it to a host processor. It also includes a user-configurable Graphical User Interface (GUI) which includes real-time display of acquired data. The host can be within the MTCA system or, via PCI113 or PCI123, in a separate PC. Full documentation is provided to allow users to customise system behaviour or develop their own application on the AMC/FMC hardware.

The DAQ includes data acquisition software that allows users to get up and running quickly and easily, while providing a high level of performance and allowing the user to extend functionality by adding their own FPGA code. Please contact VadaTech sales for the latest information on supported combinations of VadaTech hardware. (Note that the DAQ Series software is not currently supported for 3rd party hardware).

The DAQ Series software provides ability to easily implement system modelling and automatic code generation from Simulink® and MATLAB® (The Mathworks, Inc.) into Vivado FPGA project via System Generator® (Xilinx). This allows the programmer to interface with the hardware, program the FPGA at high level and benefit from:

- Vivado integration
- DSP modelling
- Bit and cycle accurate floating and fixed-point implementation
- Automatic code generation of VHDL or Verilog from Simulink
- Hardware co-simulation

Components provided in the DAQ software include:

- System libraries to configure clocking and triggers
- Sequencer to configure the acquisition (duration, start, stop)
- High-performance DMA firmware for acquiring ADC outputs and transferring to host processor
- Linux driver for host processor (e.g. AMC72x)
- EPICS channel access client API
- Pre-configured GUI (based on Qt Creator)
This software set allows the user to acquire, transfer and display data without the need for any user programming of the hardware. Status information is included in the GUI display, to ease integration and debugging activity.

The data acquisition software provided as part of the DAQ can be used as-delivered without the user needing to develop any FPGA code.

Note that VHDL source code is not provided for the DMA engine and memory block (provided as Netlists).

Full source code is provided for the libraries, sequencer, Linux driver and GUI, allowing users to easily customize or brand to their own requirements.
AMC516 – Virtex-7 FPGA Carrier for FMC, AMC

SPECIFICATIONS

Architecture

<table>
<thead>
<tr>
<th>Physical</th>
<th>Dimensions</th>
<th>Single module, mid-size (full-size optional)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Width: 2.89” (73.5 mm)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth: 7.11” (180.6 mm)</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>AMC FPGA Carrier</td>
<td>Xilinx Virtex-7 (XC7VX690T), optional on-board CPU</td>
</tr>
<tr>
<td></td>
<td>Two banks of DDR3 (64-bit and 16-bit)</td>
<td>Single FMC slot</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>AMC</th>
<th>Type</th>
<th>AMC.1, AMC.2, and AMC.4 (FPGA programmable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Management</td>
<td>IPMI</td>
<td>IPMI version 2.0</td>
</tr>
<tr>
<td>PCIe Lanes</td>
<td>Dual x4 via FPGA to AMC</td>
<td>Dual x4 via FPGA to AMC</td>
</tr>
<tr>
<td>SRIO/Aurora Lanes</td>
<td>Dual x4 via FPGA to AMC</td>
<td>Dual x4 via FPGA to AMC</td>
</tr>
<tr>
<td>Ethernet</td>
<td>10 GbE and GbE</td>
<td>Dual 10 GbE via FPGA and Dual 1000-BaseBX from PPC</td>
</tr>
</tbody>
</table>

Configuration

<table>
<thead>
<tr>
<th>Power</th>
<th>AMC516 Carrier is ~20W (without mezzanine) application specific</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Operating Temperature: -5°C to 45°C (55°C for limited time, performance restrictions may apply), industrial and extended versions also available. (See environmental spec sheet)</td>
</tr>
<tr>
<td></td>
<td>Storage Temperature: -40°C to +85°C</td>
</tr>
<tr>
<td></td>
<td>Vibration</td>
</tr>
<tr>
<td></td>
<td>Shock</td>
</tr>
<tr>
<td></td>
<td>Relative Humidity</td>
</tr>
<tr>
<td>Front Panel Interface Connectors</td>
<td>Front panel FMC, MGT RS-232, CPU RS-232</td>
</tr>
<tr>
<td>LEDs</td>
<td>IPMI management control</td>
</tr>
<tr>
<td></td>
<td>4 user defined LEDs, 5 general status LEDs</td>
</tr>
<tr>
<td>Software Support Operating System</td>
<td>Linux, VxWorks and Windows</td>
</tr>
<tr>
<td>Conformal Coating</td>
<td>Humiseal 1A33 Polyurethane (Optional)</td>
</tr>
<tr>
<td></td>
<td>Humiseal 1B31 Acrylic (Optional)</td>
</tr>
</tbody>
</table>

Other

<table>
<thead>
<tr>
<th>MTBF</th>
<th>MIL Hand book 217-F @ TBD Hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certifications</td>
<td>Designed to meet FCC, CE and UL certifications where applicable</td>
</tr>
<tr>
<td>Standards</td>
<td>VadaTech is certified to both the ISO9001:2000 and AS9100B:2004 standards</td>
</tr>
<tr>
<td>Warranty</td>
<td>Two (2) years</td>
</tr>
</tbody>
</table>

INTEGRATION SERVICES AND APPLICATION-READY PLATFORMS

VadaTech has a full ecosystem of ATCA and µTCA products including chassis platforms, shelf managers, AMC modules, Switch and Payload Boards, Rear Transition Modules (RTM), Power Modules, and more. The company also offers integration services as well as pre-configured Application-Ready Platforms. Please contact VadaTech Sales for more information.

Trademarks and Disclaimer

The VadaTech logo is a registered trademark of VadaTech, Inc. Other registered trademarks are the property of their respective owners. AdvancedTCA™ and the AdvancedMC™ logo are trademarks of the PCI Industrial Computers Manufacturers Group. All rights reserved. Specification subject to change without notice.
AMC516 – Virtex-7 FPGA Carrier for FMC, AMC

ORDERING OPTIONS

AMC516 – ABC – DEF – GHJ

A = FPGA DDR3 Memory
0 = None
1 = Reserved
2 = 2 GB + 128 MB

B = QoriQ CPU Sub-system
0 = None (FPGA loaded via flash)
1 = P2040

C = Front Panel Size
1 = Reserved
2 = Mid-size
3 = Full-size

D = FPGA
0 = Reserved
1 = Reserved
2 = XC7VX690T

E = FPGA Speed
1 = Low
2 = High
3 = Highest

F = PCIe Option
0 = No PCIe
1 = PCIe on ports 4 – 7
2 = PCIe on ports 8 – 11
3 = PCIe on ports 4 – 11

G = Clock Holdover Stability
0 = Standard (XO)
1 = Stratum-3 (TCXO)

H = Temperature Range
0 = Commercial (–5° to +45° C)
1 = Industrial (–20° to +70° C)
2 = Extended (–40° to +85° C)*

J = Conformal Coating
0 = None
1 = Humiseal 1A33 Polyurethane
2 = Humiseal 1B31 Acrylic

*Edge of module for conduction-cooled boards

RELATED PRODUCTS

VT899 Cube Chassis
FMC223 High Speed FMC for DAC
UTC020 1000W Power Module

CONTACT US

VadaTech Corporate Office
198 N. Gibson Rd.
Henderson, NV 89014
Email: info@vadatech.com
Telephone: +1 702 896-3337
Fax: +1 702 896-0332

Asia Pacific Sales Office
7 Floor, No. 2, Wenhua Street, Neihu District,
Taipei 114, Taiwan
Email: info@vadatech.com
Telephone: +886-2-2627-7655
Fax: +886-2-2627-7792

VadaTech European Sales Office
VadaTech House, Bulls Copse Road,
Southampton, SO40 9LR
Email: info@vadatech.com
Telephone: +44 2380 016403